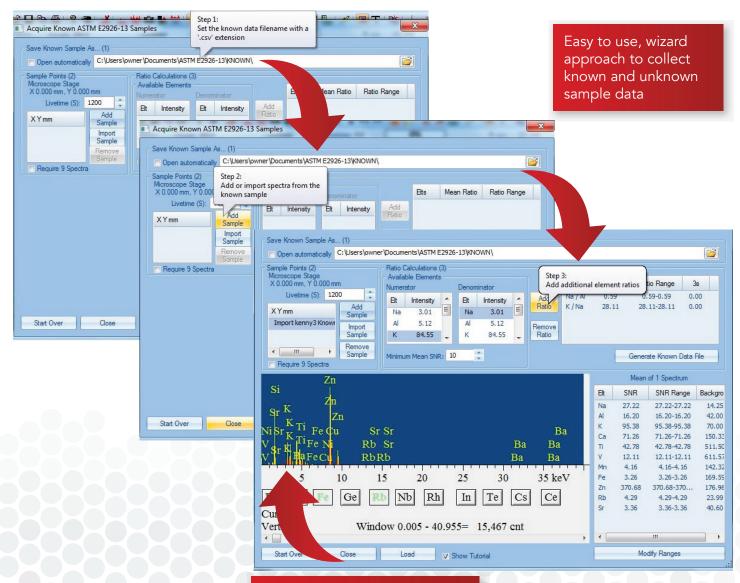
IXRF Systems is proud to present the addition of the "ASTM Method for Forensic Comparison of Glass Using Micro X-ray Fluorescence (µ-XRF) Spectrometry"

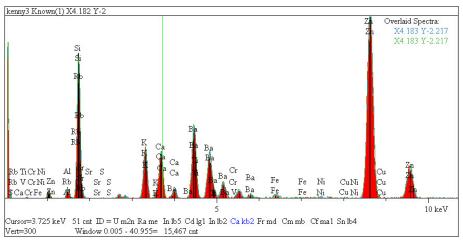
to our software, Iridium Ultra.



The ASTM method is for the non-destructive comparison of forensic glass fragments by determining the major, minor, and trace elements present in the glass. Iridium Ultra incorporates all of the analytical requirements of the ASTM method in an easy to use format, that includes everything from automatic peak identification to automatic report generation. The guidelines of the method are built into the software to assure that all aspects of the method are correctly followed and documented.

Spectra can be collected via IXRF's Micro-XRF mounted on an SEM or by importing spectra collected from a benchtop XRF.

ASTM E2926-13


Automatic Peak Identification

Forensic Comparison of Glass

using Micro X-ray Fluorescence (µ-XRF) Spectrometry

Unknown samples can be automatically searched against a saved library of known samples, in-house standards, or certified reference standards.

Iridium Ultra automatically generates reports and saves the spectra as JPEGs.

1	A	В	C	D	E	F	G	Н	1	J	K	L	M
1	ASTM E292	6-13 rep	ort for Qu	estion Sa	mple "ker	nny3"							
2	Generated	Generated 12/6/2013 by iXRF Iridium Ultra Software											
3													
4	Q = Questi	oned											
5													
6		m overlay shown in files:											
7		C:\Documents and Settings\Administrator\Documents\ASTM E2926-13\REPORT\kenny3.jpg											
8	(C:\Documents and Settings\Administrator\Documents\ASTM E2926-13\KNOWN\Known kenny3.jpg									jpg		
9													
10	Summary T												
11	k	Known	Element		Ca / K	Ca / Al							
12	k	Known k	Yes	Range O	Range O	Range O	verlap						
13													
14	Decision T												
15		Element											
16		Q) kenn		Al	K	Ca	Ti	V	Mn	Fe	Zn		
17	S	SNR Ran		13.31-15.								31.91	
18		SNR Mea		14.75	81.33	76.81	38.53	15.22	5.33	4.15	371.9		
19	E	Backgrou	10.29	38.63	79.33	133.02	565	581.43	120.71	167.11	175.24		
20													
21		Known k		Al	K	Ca	Ti	V	Mn	Fe	Zn	Sr	Y
22				16.20-20.									
23		SNR Mea		18.86	85.96	80.17	39.29	13.79	3.32	5.31	366.41	4.59	4.18
24	E	Backgrou	11.88	35	75.33	128.92	557	596.86	145.14	152.82	183.85	36.87	20.32
25													
26		Ratio Tables:											
27		Q) kenn		Ca / K	Ca / Al								
28	F	Ratio Ra	0.00-1.04	0.00-68.6	0.00-7.95								
29													
30	-	Known k		Ca / K	Ca / Al								
31	F	Ratio Ra	0.00-0.01	0.00-0.01	0.02-0.11								
32	4 → → ke		/str										

Iridium Ultra automatically calculates element ratios and signal to noise ratios per ASTM method.

In addition, it automatically creates Excel Spread Sheets.

Want More information?

Contact us at sales@ixrfsystems.com or +1 512.386.6100

- 4	A	В	С	D	E	F	G	Н
1	Known ke	enny3 gen	erated 12/	6/2013 by	iXRF Iridiu	m Ultra Sc	ftware	
2		-		i				
3	Ratio tab	le:						
4	Ratio	Mean	Low	High	3s			
5	Ca/Ti	0.01	0	0.01	0.01			
6	Ca/K	0	0	0.01	0.01			
7	Ca/Al	0.06	0.02	0.11	0.11			
8								
9	Element t	able						
10	Element Mean SN		SNR Low	SNR Low SNR High		ekground		
11	Na	26.09	21.13	29.92	11.88	77		
12	Al	18.86	16.2	20.89	35			
13	K	85.96	71.42	95.38	75.33			
14	Ca	80.17	69.18	100.07	128.92			
15	Ti	39.29	35.83	42.78	557			
16	V	13.79	12.11	15.8	596.86			
17	Mn	3.32	2.74	4.16	145.14			
18	Fe	5.31	3.26	8.48	152.82			
19	Zn	366.41	337.21	391.33	183.85			
20	Sr	4.59	3.16	7.24	36.87			
21	Y	4.18		2.16-12.5	20.32			
22								
23	Rangest	able						
24			High Pre	Low Pea	High Pea	Low Pos	High Post-pea	
25	Na	0.92	0.96	0.95	1.13	1.12	1.16	
26	Mg	1.13	1.17	1.16	1.34	1.33	1.37	
27	Al	1.38	1.42	1.42	1.56	1.55	1.57	
28	S	2.11	2.16	2.21	2.41	2.46	2.51	
29	K	3.19	3.22	3.25	3.4	3.41	3.44	
30	Ca	3.17	3.21	3.49	3.89	4.24	4.28	
31	Ti	4.22	4.31	4.36	4.66	4.71	4.8	
32	V	4.7	4.75	4.8	5.1	5.15	5.2	
33	Cr	5.11	5.21	5.26	5.56	5.61	5.71	
34	Mn	5.59	5.69	5.74	6.04	6.09	6.19	
35	Fe	6.05	6.15	6.2	6.6	6.65	6.75	
36	Co	6.67	6.72	6.77	7.07	7.12	7.17	
37	Ni	7.2	7.27	7.32	7.62	7.67	7.74	